Stem Cells
Are iPSCs a Bottleneck in Your Lab?
Generate 100s of healthy monoclonal iPSCs or hESCs
The ability of CellRaft technology to provide flask-like culture conditions while maintaining spatial separation of single cells greatly improves iPSC viability and monoclonal colony formation. In addition, a single CellRaft Array can screen thousands of iPSCs, decreasing the time required for cell line generation and therapeutic discovery. This system can increase the utility of iPSCs by collapsing complicated iPSC maintenance and cell line development workflows.
- Increase clonal iPSC generation by 25X compared to limiting dilution
- Track and trace iPSCs from single cell to clone
- Expand, characterize, edit, and reprogram
- Confirm pluripotency on-array prior to clonal expansion
- Reduce time, consumables, materials, and labor required for iPSC clonal development
- Enable 2D and 3D applications including cell line development, reprogramming, and differentiation
- Fully automate the gentle isolation of viable, validated iPSC cell lines
Increase in iPSC Monoclonal Colony Generation and Outgrowth
The CellRaft AIR System is able to screen more than 60,000 individual iPSCs per CellRaft Array which is 500X more cells than a traditional 96-well plate with limiting dilution. This increases your likelihood of success in these workflows.
Track and Trace from Single Cell to Clone
Follow the maturation of a clone as it grows from a single cell.
Enable All iPSC Workflows Using CellRaft Technology
- Expand the clonal population on the array
- Characterize for phenotyping or pluripotency
- Differentiate into 3D tissues or organoids
- Reprogram differentiated fibroblasts into pluripotent stem cells
Reduce Time, Consumables, Materials, and Labor
The labor, cost, and reagent burden associated with iPSC maintenance and workflows can be incredibly high and often prohibitive for many laboratories.
We compared clonal iPSC development using CellRaft Technology to traditional limiting dilution. Using the CellRaft Array, we were able to generate over 200 single cell-derived iPSC clones on a single array, compared to 10 clones in a single 96-well plate with limiting dilution. This workflow required 1000X less iPSC coating and 2000X less media per cell screened.
Grow and Isolate iPSC-derived Organoids
CellRaft Technology can be used to grow and maintain hundreds of individual organoids. You can serially image the same organoid over time and phenotypically characterize organoids to identify the ones of interest.