Resources

Publication: Dissolution-guided wetting for microarray and microfluidic devices.

The widespread use of lab-on-a-chip devices containing microcavities in the form of microwells, traps, dead ends, and corners, is often precluded by the trapping of air bubbles. Allbritton and colleagues present a straightforward and simple approach to mitigating bubble formation that can be applied to the CellRaft™ Arrays that are the cornerstone of the CellRaft® Technology. Air bubbles are eliminated in a two-step process, whereby microarrays are first hydrophilized by plasma treatment, and subsequently coated with a monosaccharide such as D-glucose or D-sorbitol. Following this treatment, microwell arrays can be stored for as long as 6 months in air, and complete rewetting of the microwells is demonstrated by the dissolution of the monosaccharide with an aqueous solution.

Related Resources

DNA mutations in somatic cells have been implicated in the causation of aging, with longer-lived species having a higher capacity to maintain genome sequence integrity...

This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations....

13 platforms for single cell collection and analysis were examined for their advantages and limitations including the CellRaft AIR System. For the AIR System it...